Role of Molecular Recognition in l-Cystine Crystal Growth Inhibition

نویسندگان

  • Laura N. Poloni
  • Zina Zhu
  • Nelson Garcia-Vázquez
  • Anthony C. Yu
  • David M. Connors
  • Longqin Hu
  • Amrik Sahota
  • Michael D. Ward
  • Alexander G. Shtukenberg
چکیده

l-Cystine kidney stones-aggregates of single crystals of the hexagonal form of l-cystine-afflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera-Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential pharmacologic treatments for cystinuria and for calcium stones associated with hyperuricosuria.

Two new potential pharmacologic therapies for recurrent stone disease are described. The role of hyperuricosuria in promoting calcium stones is controversial with only some but not all epidemiologic studies demonstrating associations between increasing urinary uric acid excretion and calcium stone disease. The relationship is supported by the ability of uric acid to "salt out" (or reduce the so...

متن کامل

Effects of nutritional characteristics of Streptococcus agalactiae on inhibition of growth by lactoperoxidase-thiocyanate-hydrogen peroxide in chemically defined culture medium.

Five cultures of Streptococcus agalactiae have an absolute requirement for L-cystine to grow in a chemically defined medium. The L-cystine could be replaced with cysteine, glutathione, or the disulfide form of glutathione. Dithiothreitol could not substitute for the sulfur-containing amino acids of glutathione; hence, the growth requirement appears to be truly nutritional. Growth was maximum wi...

متن کامل

Molecular mechanisms of cystine transport.

The transport of L-cystine into cells of the mammalian brain is an essential step in the supply of cysteine for synthesis of the antioxidant glutathione. Uptake of L-cystine in rat brain synaptosomes occurs by three mechanisms that are distinguishable on the basis of their ionic dependence, kinetics of transport and specificity of inhibitors. Almost 90% of L-cystine transport is by a low-affini...

متن کامل

Correction for Ye et al., Nrf2- and ATF4-Dependent Upregulation of xCT Modulates the Sensitivity of T24 Bladder Carcinoma Cells to Proteasome Inhibition.

The ubiquitin-proteasome pathway degrades ubiquitinated proteins to remove damaged or misfolded protein and thus plays an important role in the maintenance of many important cellular processes. Because the pathway is also crucial for tumor cell growth and survival, proteasome inhibition by specific inhibitors exhibits potent antitumor effects in many cancer cells. xCT, a subunit of the cystine ...

متن کامل

Tying the knot: The cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines

The cystine-knot motif, made up of three intertwined disulfide bridges, is a unique feature of several toxins, cyclotides and growth factors, and occurs in a variety of species, including fungi, insects, molluscs and mammals. Growth factor molecules containing the cystine-knot motif serve as ligands for a diverse range of receptors and play an important role in extracellular signalling. This su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017